riskybizz007
New member
Posted this in the supplements board... posting it up here as well in case anyone is interested.
ALA prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity.
Aguirre N, Barrionuevo M, Ramirez MJ, Del Rio J, Lasheras B.
Department of Pharmacology, School of Medicine, University of Navarra,
Pamplona, Spain.
A single administration of 3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, i.p.), induced significant hyperthermia in rats and reduced 5-hydroxytryptamine (5-HT) content and [3H]paroxetine-labeled 5-HT transporter density in the frontal cortex, striatum and hippocampus by 40-60% 1 week later. MDMA treatment also increased glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus. Repeated administration of the metabolic antioxidant alpha-lipoic acid (100 mg/kg, i.p., b.i.d. for 2 consecutive days) 30 min prior to MDMA did not prevent the acute hyperthermia induced by the drug; however, it fully prevented the serotonergic deficits and the changes in the glial response induced by MDMA. These results further support the hypothesis that free radical formation is responsible for MDMA-induced neurotoxicity.
ALA prevents 3,4-methylenedioxy-methamphetamine (MDMA)-induced neurotoxicity.
Aguirre N, Barrionuevo M, Ramirez MJ, Del Rio J, Lasheras B.
Department of Pharmacology, School of Medicine, University of Navarra,
Pamplona, Spain.
A single administration of 3,4-methylenedioxymethamphetamine (MDMA, 20 mg/kg, i.p.), induced significant hyperthermia in rats and reduced 5-hydroxytryptamine (5-HT) content and [3H]paroxetine-labeled 5-HT transporter density in the frontal cortex, striatum and hippocampus by 40-60% 1 week later. MDMA treatment also increased glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus. Repeated administration of the metabolic antioxidant alpha-lipoic acid (100 mg/kg, i.p., b.i.d. for 2 consecutive days) 30 min prior to MDMA did not prevent the acute hyperthermia induced by the drug; however, it fully prevented the serotonergic deficits and the changes in the glial response induced by MDMA. These results further support the hypothesis that free radical formation is responsible for MDMA-induced neurotoxicity.