I agree, if you want to save money then get the regular ALA. It's only 8-12% as effective as Glucorell R so if you took 6 times as much you may get about the same results. Of course now that would mean taking a dose of ALA that is likely to harm your kidneys, just like it says in this study. But like you said, at least you'll be saving some money.
Kidney Int. 2005 Apr;67(4):1371-80.
Mechanisms of antioxidant and pro-oxidant effects of alpha-lipoic acid in the diabetic and nondiabetic kidney.
Bhatti F, Mankhey RW, Asico L, Quinn MT, Welch WJ, Maric C.
Department of Medicine, Division of Nephrology and Hypertension, Georgetown University Medical Center, Washington, DC 20057, USA.
BACKGROUND: alpha-Lipoic acid is a potent antioxidant that improves renal function in diabetes by lowering glycemia, however, the mechanisms by which alpha-lipoic acid exerts its antioxidant effects are not completely understood. METHODS: Metabolic parameters, renal function, and morphology, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity and subunit expression were analyzed in nondiabetic and streptozotocin-induced diabetic rats fed normal rat chow (control) with or without alpha-lipoic acid (30 mg/kg body weight) for 12 weeks. RESULTS: Blood glucose was increased with diabetes (nondiabetic + control 89 +/- 3 mg/dL and diabetic + control 336 +/- 28 mg/dL) and was similar with alpha-lipoic acid treatment (diabetic +alpha-lipoic acid 351 +/- 14 mg/dL). In contrast, alpha-lipoic acid attenuated albuminuria (nondiabetic + control 8.9 +/- 1.3 mg/day; diabetic + control 28.1 +/- 4.6 mg/day; and diabetic +alpha-lipoic acid 17.8 +/- 1.2 mg/day) associated with diabetes. Similarly, alpha-lipoic acid attenuated glomerulosclerosis (nondiabetic + control 0.22 +/- 0.01; diabetic + control 0.55 +/- 0.04; diabetic +alpha-lipoic acid 0.36 +/- 0.03), tubulointerstitial fibrosis (nondiabetic + control 0.42 +/- 0.18; diabetic + control 1.52 +/- 0.05; diabetic +alpha-lipoic acid 1.10 +/- 0.05), superoxide anion (O(.-) (2)) generation (nondiabetic +control 15.8 +/- 1.7; diabetic +control 87.1 +/- 3.5; diabetic +alpha-lipoic acid 25.5 +/- 3.3 RLU/mg protein), and urine 8-isoprostane (8-iso) excretion (nondiabetic + control 7.4 +/- 1.4; diabetic + control 26.0 +/- 4.5; diabetic +alpha-lipoic acid 19.6 +/- 5.6 ng/day) associated with diabetes. alpha-Lipoic acid also reduced kidney expression of NADPH oxidase subunits p22phox and p47phox. Surprisingly, alpha-lipoic acid appears to cause pro-oxidant effects in nondiabetic animals, resulting in increased albuminuria (nondiabetic +alpha-lipoic acid 14.2 +/- 1.2 mg/day), increase in plasma creatinine levels (nondiabetic + control 59 +/- 6; diabetic + control 68 +/- 6; nondiabetic +alpha-lipoic acid 86 +/- 9; diabetic +alpha-lipoic acid 69 +/- 7 mumol/L), exacerbated glomerulosclerosis and tubulointerstitial fibrosis, increased O(.-) (2) generation, up-regulated p22phox and p47phox expression and increased 8-iso excretion. CONCLUSION: We conclude that alpha-lipoic acid improves albuminuria and pathology in diabetes by reducing oxidative stress, while in healthy animals, alpha-lipoic acid may act as a pro-oxidant, contributing to renal dysfunction.