chazk
New member
here is why you should not always surpress prolactin to much becuase IT WILL LOWER TESTOSTERONE and surpress testosterone binding sites.cuasing further testicle shrinkage
So only surpress prolactin when its a issue such as nipple swelling and gyno prolactin.
here is a study
****************************************
Bromocriptine and Steroidgenesis
It has been appreciated for decades that elevated levels of prolactin in males (hyperprolactinemia) can suppress testosterone production. Hyperprolactinemia disrupts the hypothalamic-pituitary-gonadal axis in women as well, leading to amenorrhea and infertility. Since bromocriptine lowers prolactin levels, when bromocriptine is administered to these patients, normal sexual function is usually restored. What is less well known is that studies done both in vitro and in humans suggest that hypoprolactinemia (low prolactin levels) also leads to suppressed testosterone production. So prolactin appears to exert a biphasic effect: too much or too little can disrupt testicular function. Normal physiological levels of prolactin appear to be necessary for normal gonadal function. (10) (11). To quote from Marin-Lopez et al, (10), where sulpiride and bromocriptine were used respectively to induce hyper and hypoprolactinemia in normal males
"the hyperprolactinemia induced a low basal level of testosterone with a higher response of this steroid to hCG...while the loss of the trophic effect of prolactin on gonadal steroidogenesis, as seen in hypoprolactinemia produces a decrease of basal testosterone levels without any alteration of the response of this steroid to hCG. We conclude that prolactin plays an important role in the steroidogenesis of Leydig cells in normal men.'' (11)
Confusing the issue is the fact that several other studies both in vitro and in vivo have shown either no effect or an increase in testosterone production due to both prolactin and bromocriptine administration (12) (13).
A number of experimental observations have led to several theories that could possibly explain how bromocriptine induced hypoprolactinemia suppresses testosterone production. Kovacevic and Sarac (14) proposed that bromocriptine competitively inhibits androgen production at the level of the testicular enzymes 17 alpha-hydroxylase and/or 17,20-lyase. These enzymes act at intermediate steps in the testicular production of testosterone. Aisaka et al. observed a decrease in luteinizing hormone (LH) levels that was mirrored by a decrease in testosterone after bromocriptine administration, suggesting that bromocriptine directly inhibits LH secretion from the pituitary (15). As we know, luteinizing hormone, or LH, secreted from the pituitary gland acts directly on testicular Leydig cells to stimulate testosterone secretion.
On the other hand Suescun et al. observed a decrease in circulating testosterone after bromocriptine administration in men with no decrease in LH levels (16), consistent with a direct testicular action of bromocriptine, as proposed by Kovacevic.
Other studies have shown that lowering prolactin decreases the binding of LH to the Leydig cell LH receptor, with a concomittent reduction in androgen production (17). These researchers concluded that
These results suggest that under normal conditions, endogenous prolactin plays a key role in maintaining the functional integrity of rat Leydig cells." (16)
So perhaps by either lowering the affinity of the LH receptor to LH, or by directly decreasing LH receptor number, bromocriptine could lower testosterone production
As is obvious from the conflicting studies, and the variety of proposed mechanisms for bromocriptine induced testosterone suppression, there is much to be learned about the role of prolactin in maintaining normal testicular steroidogenesis.
http://www.superiormuscle.com/vbulletin/showthread.php?t=24649
link to the forum where the study is posted . I do not want to take any credit for cutting and pasting thats not what i do unlike others. this is just info from yellowjacket and i though people on elite should see why some prolactin is good and no need to surpress it all.
So only surpress prolactin when its a issue such as nipple swelling and gyno prolactin.
here is a study
****************************************
Bromocriptine and Steroidgenesis
It has been appreciated for decades that elevated levels of prolactin in males (hyperprolactinemia) can suppress testosterone production. Hyperprolactinemia disrupts the hypothalamic-pituitary-gonadal axis in women as well, leading to amenorrhea and infertility. Since bromocriptine lowers prolactin levels, when bromocriptine is administered to these patients, normal sexual function is usually restored. What is less well known is that studies done both in vitro and in humans suggest that hypoprolactinemia (low prolactin levels) also leads to suppressed testosterone production. So prolactin appears to exert a biphasic effect: too much or too little can disrupt testicular function. Normal physiological levels of prolactin appear to be necessary for normal gonadal function. (10) (11). To quote from Marin-Lopez et al, (10), where sulpiride and bromocriptine were used respectively to induce hyper and hypoprolactinemia in normal males
"the hyperprolactinemia induced a low basal level of testosterone with a higher response of this steroid to hCG...while the loss of the trophic effect of prolactin on gonadal steroidogenesis, as seen in hypoprolactinemia produces a decrease of basal testosterone levels without any alteration of the response of this steroid to hCG. We conclude that prolactin plays an important role in the steroidogenesis of Leydig cells in normal men.'' (11)
Confusing the issue is the fact that several other studies both in vitro and in vivo have shown either no effect or an increase in testosterone production due to both prolactin and bromocriptine administration (12) (13).
A number of experimental observations have led to several theories that could possibly explain how bromocriptine induced hypoprolactinemia suppresses testosterone production. Kovacevic and Sarac (14) proposed that bromocriptine competitively inhibits androgen production at the level of the testicular enzymes 17 alpha-hydroxylase and/or 17,20-lyase. These enzymes act at intermediate steps in the testicular production of testosterone. Aisaka et al. observed a decrease in luteinizing hormone (LH) levels that was mirrored by a decrease in testosterone after bromocriptine administration, suggesting that bromocriptine directly inhibits LH secretion from the pituitary (15). As we know, luteinizing hormone, or LH, secreted from the pituitary gland acts directly on testicular Leydig cells to stimulate testosterone secretion.
On the other hand Suescun et al. observed a decrease in circulating testosterone after bromocriptine administration in men with no decrease in LH levels (16), consistent with a direct testicular action of bromocriptine, as proposed by Kovacevic.
Other studies have shown that lowering prolactin decreases the binding of LH to the Leydig cell LH receptor, with a concomittent reduction in androgen production (17). These researchers concluded that
These results suggest that under normal conditions, endogenous prolactin plays a key role in maintaining the functional integrity of rat Leydig cells." (16)
So perhaps by either lowering the affinity of the LH receptor to LH, or by directly decreasing LH receptor number, bromocriptine could lower testosterone production
As is obvious from the conflicting studies, and the variety of proposed mechanisms for bromocriptine induced testosterone suppression, there is much to be learned about the role of prolactin in maintaining normal testicular steroidogenesis.
http://www.superiormuscle.com/vbulletin/showthread.php?t=24649
link to the forum where the study is posted . I do not want to take any credit for cutting and pasting thats not what i do unlike others. this is just info from yellowjacket and i though people on elite should see why some prolactin is good and no need to surpress it all.