Still cannot accept the
fact that there is no evidence that insulin spikes do anything for anabolism PWO. LOOK , it's a long standing myth and nothing more.
1....
Determinants of post-exercise glycogen synthesis during short-term recovery.
Jentjens R, Jeukendrup A.
Human Performance Laboratory, School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
The pattern of muscle glycogen synthesis following glycogen-depleting exercise occurs in two phases.
Initially, there is a period of rapid synthesis of muscle glycogen that does not require the presence of insulin and lasts about 30-60 minutes. This rapid phase of muscle glycogen synthesis is characterised by an exercise-induced translocation of glucose transporter carrier protein-4 to the cell surface, leading to an increased permeability of the muscle membrane to glucose. Following this rapid phase of glycogen synthesis, muscle glycogen synthesis occurs at a much slower rate and this phase can last for several hours. Both muscle contraction and insulin have been shown to increase the activity of glycogen synthase, the rate-limiting enzyme in glycogen synthesis. Furthermore, it has been shown that muscle glycogen concentration is a potent regulator of glycogen synthase. Low muscle glycogen concentrations following exercise are associated with an increased rate of glucose transport and an increased capacity to convert glucose into glycogen.The highest muscle glycogen synthesis rates have been reported when large amounts of carbohydrate (1.0-1.85 g/kg/h) are consumed immediately post-exercise and at 15-60 minute intervals thereafter, for up to 5 hours post-exercise. When carbohydrate ingestion is delayed by several hours, this may lead to ~50% lower rates of muscle glycogen synthesis. The addition of certain amino acids and/or proteins to a carbohydrate supplement can increase muscle glycogen synthesis rates, most probably because of an enhanced insulin response. However, when carbohydrate intake is high (>/=1.2 g/kg/h) and provided at regular intervals, a further increase in insulin concentrations by additional supplementation of protein and/or amino acids does not further increase the rate of muscle glycogen synthesis. Thus, when carbohydrate intake is insufficient (<1.2 g/kg/h), the addition of certain amino acids and/or proteins may be beneficial for muscle glycogen synthesis. Furthermore, ingestion of insulinotropic protein and/or amino acid mixtures might stimulate post-exercise net muscle protein anabolism. Suggestions have been made that carbohydrate availability is the main limiting factor for glycogen synthesis. A large part of the ingested glucose that enters the bloodstream appears to be extracted by tissues other than the exercise muscle (i.e. liver, other muscle groups or fat tissue) and may therefore limit the amount of glucose available to maximise muscle glycogen synthesis rates. Furthermore, intestinal glucose absorption may also be a rate-limiting factor for muscle glycogen synthesis when large quantities (>1 g/min) of glucose are ingested following exercise.
2. Carbohydrate nutrition before, during, and after exercise.
Costill DL.
The role of dietary carbohydrates (CHO) in the resynthesis of muscle and liver glycogen after prolonged, exhaustive exercise has been clearly demonstrated. The mechanisms responsible for optimal glycogen storage are linked to the activation of glycogen synthetase by depletion of glycogen and the subsequent intake of CHO. Although diets rich in CHO may increase the muscle glycogen stores and enhance endurance exercise performance when consumed in the days before the activity, they also increase the rate of CHO oxidation and the use of muscle glycogen. When consumed in the last hour before exercise, the insulin stimulated-uptake of glucose from blood often results in hypoglycemia, greater dependence on muscle glycogen, and an earlier onset of exhaustion than when no CHO is fed. Ingesting CHO during exercise appears to be of minimal value to performance except in events lasting 2 h or longer. The form of CHO (i.e., glucose, fructose, sucrose) ingested may produce different blood glucose and insulin responses, but the rate of muscle glycogen resynthesis is about the same regardless of the structure.
PMID: 3967778 [PubMed - indexed for MEDLINE]
3.
Hyperinsulinaemia, hyperaminoacidaemia and post-exercise muscle anabolism: the search for the optimal recovery drink -- Manninen 40 (11): 900 -- British Journal of Sports Medicine
The studies reviewed here indicate that nutritional mixtures containing protein hydrolysates, added leucine, and high-glycaemic CHO greatly augment insulin secretion compared with high-glycaemic CHO only. When post-exercise hyperinsulinaemia is supported by protein hydrolysate and leucine ingestion-induced hyperaminoacidaemia, net protein deposition in muscle should occur. Thus, post-exercise recovery drinks containing these nutrients in conjunction with appropriate resistance training may lead to increased skeletal muscle hypertrophy and strength. If so, such post-exercise supplements would be of considerable benefit not only to athletes but also to anyone who has lost muscle function through disease—for example, Duchenne muscular dystrophy. Future studies should evaluate their long-term effects on body composition and exercise performance.
SO there's three MORE studies which back my claim that when adequate proteins re present , the need for excessive CHO is not....