Some info on vitamine E
... and the advantages of "natural" vitamine E over commercial vitamin E supplements
By Karin Granstrom Jordan, M.D. from Life Extension
[BTW is this "foundation" serious ?]
While numerous studies show that vitamin E suppresses free radicals, there is evidence that commercial vitamin E supplements do not provide adequate antioxidant protection.
Most vitamin E supplements consist primarily of alpha tocopherol. Recent studies indicate that a lot more than alpha tocopherol is needed to protect against degenerative disease.
To obtain optimal health benefits from vitamin E, a mixture of tocopherols (alpha, beta, delta, and gamma) and tocotrienols (alpha, beta, delta, and gamma) are required. Some of the functions of these vitamin E fractions are similar while others are completely different. When taken together, these various forms of vitamin E work synergistically as a team to provide maximum benefits.
In this article, we discuss scientific findings supporting the value of the full spectrum of vitamin E that includes the tocopherols and tocotrienols.
The Tocotrienols
In 1995, Life Extension added a small amount of tocotrienols to a Coenzyme Q10 supplement used by most Life Extension Foundation members. Evidence at that time showed that tocotrienols could help protect against free radical-induced disease.
More recent research shows that tocotrienols may be the most important members of the vitamin E family. In an animal model of aging, tocotrienols extended lifespan by 19% while reducing protein carbonylation, a particularly toxic oxidation process indicative of aging.[1] Not only have tocotrienols demonstrated a superior antioxidant effect compared to alpha tocopherol (40-60 times more effective), but in a clinical study they have been shown to reverse carotid stenosis (narrowing of the carotid artery due to atherosclerosis), thus reducing the risk of stroke.
Tocotrienols have also been shown to reduce the level of LDL (the “bad” form of cholesterol) and apolipoprotein B, both of which are important risk factors for atherosclerosis and cardiovascular disease. Furthermore, tocotrienols have been shown to inhibit the growth of cancer cells. While tocotrienols are found in high concentration in palm oil and rice bran, palm-derived tocotrienols are better supported by research.
The difference in effect between tocopherols and tocotrienols is believed to be caused by a subtle difference in molecular structure. Tocotrienols have an isoprenoid instead of a phytyl side chain. Double bonds in the isoprenoid side chain allow tocotrienols to move freely and more efficiently within cell membranes than tocopherols, giving tocotrienols greater ability to catch and fight free radicals. This greater mobility also allows tocotrienols to recycle more quickly than alpha-tocopherol.
Alpha versus Gamma Tocopherol
Several large studies have shown great benefits of vitamin E intake in reducing cardiovascular disease and death from heart attacks, while others have failed to show similar results.[2-8] This discrepancy may well be due to the fact that only alpha-tocopherol was studied in isolation, while gamma-tocopherol and toco-trienols were not considered.
This may also explain why vitamin E as found in food is more effective than alpha-tocopherol supplements in reducing death from cardiovascular disease.[9-10] Food provides a broader spectrum of the vitamin E family than conventional supplements. For example, vitamin E in the typical American diet contains considerably more gamma-tocopherol than alpha-tocopherol[11] in contrast to supplements that generally contain only alpha-tocopherol, or insignificant amounts of gamma-tocopherol, tocotrienols and other members of the vitamin E family.
Moreover, studies indicate that high dose alpha-tocopherol supplementation considerably decreases the absorption of gamma-tocopherol and reduces the effects of tocotrienols. One group of scientists observed that when human volunteers (age 30-60) were given 1,200 IU of synthetic alpha-tocopherol daily for 8 weeks, plasma gamma-tocopherol decreased in all subjects to 30-50% of initial values.[12] This is another indication of the importance of a balanced
vitamin E intake.
A Swedish study found that patients with coronary heart disease had lower levels of gamma tocopherol and a higher alpha-to-gamma ratio than healthy age-matched subjects.[13]
While alpha-tocopherol has long been known as an important antioxidant, research has now shown that the complete vitamin E team is much more effective. The different vitamin E forms have complementary effects as free radical scavengers. Together they can fight a wider spectrum of free radicals than alpha-tocopherol alone.
One research group found that gamma-tocopherol is significantly more effective than alpha-tocopherol in inhibiting the powerful and harmful oxidizing agent peroxynitrite.[14] While alpha-tocopherol can to some extent inhibit free radical generation, gamma-tocopherol is able to trap and remove existing free radicals as well as highly toxic compounds such as peroxynitrite.[15] Gamma tocopherol can, therefore, protect cells against the mutagenic and carcinogenic effects of the very damaging reactive nitrogen species
... and the advantages of "natural" vitamine E over commercial vitamin E supplements
By Karin Granstrom Jordan, M.D. from Life Extension
[BTW is this "foundation" serious ?]
While numerous studies show that vitamin E suppresses free radicals, there is evidence that commercial vitamin E supplements do not provide adequate antioxidant protection.
Most vitamin E supplements consist primarily of alpha tocopherol. Recent studies indicate that a lot more than alpha tocopherol is needed to protect against degenerative disease.
To obtain optimal health benefits from vitamin E, a mixture of tocopherols (alpha, beta, delta, and gamma) and tocotrienols (alpha, beta, delta, and gamma) are required. Some of the functions of these vitamin E fractions are similar while others are completely different. When taken together, these various forms of vitamin E work synergistically as a team to provide maximum benefits.
In this article, we discuss scientific findings supporting the value of the full spectrum of vitamin E that includes the tocopherols and tocotrienols.
The Tocotrienols
In 1995, Life Extension added a small amount of tocotrienols to a Coenzyme Q10 supplement used by most Life Extension Foundation members. Evidence at that time showed that tocotrienols could help protect against free radical-induced disease.
More recent research shows that tocotrienols may be the most important members of the vitamin E family. In an animal model of aging, tocotrienols extended lifespan by 19% while reducing protein carbonylation, a particularly toxic oxidation process indicative of aging.[1] Not only have tocotrienols demonstrated a superior antioxidant effect compared to alpha tocopherol (40-60 times more effective), but in a clinical study they have been shown to reverse carotid stenosis (narrowing of the carotid artery due to atherosclerosis), thus reducing the risk of stroke.
Tocotrienols have also been shown to reduce the level of LDL (the “bad” form of cholesterol) and apolipoprotein B, both of which are important risk factors for atherosclerosis and cardiovascular disease. Furthermore, tocotrienols have been shown to inhibit the growth of cancer cells. While tocotrienols are found in high concentration in palm oil and rice bran, palm-derived tocotrienols are better supported by research.
The difference in effect between tocopherols and tocotrienols is believed to be caused by a subtle difference in molecular structure. Tocotrienols have an isoprenoid instead of a phytyl side chain. Double bonds in the isoprenoid side chain allow tocotrienols to move freely and more efficiently within cell membranes than tocopherols, giving tocotrienols greater ability to catch and fight free radicals. This greater mobility also allows tocotrienols to recycle more quickly than alpha-tocopherol.
Alpha versus Gamma Tocopherol
Several large studies have shown great benefits of vitamin E intake in reducing cardiovascular disease and death from heart attacks, while others have failed to show similar results.[2-8] This discrepancy may well be due to the fact that only alpha-tocopherol was studied in isolation, while gamma-tocopherol and toco-trienols were not considered.
This may also explain why vitamin E as found in food is more effective than alpha-tocopherol supplements in reducing death from cardiovascular disease.[9-10] Food provides a broader spectrum of the vitamin E family than conventional supplements. For example, vitamin E in the typical American diet contains considerably more gamma-tocopherol than alpha-tocopherol[11] in contrast to supplements that generally contain only alpha-tocopherol, or insignificant amounts of gamma-tocopherol, tocotrienols and other members of the vitamin E family.
Moreover, studies indicate that high dose alpha-tocopherol supplementation considerably decreases the absorption of gamma-tocopherol and reduces the effects of tocotrienols. One group of scientists observed that when human volunteers (age 30-60) were given 1,200 IU of synthetic alpha-tocopherol daily for 8 weeks, plasma gamma-tocopherol decreased in all subjects to 30-50% of initial values.[12] This is another indication of the importance of a balanced
vitamin E intake.
A Swedish study found that patients with coronary heart disease had lower levels of gamma tocopherol and a higher alpha-to-gamma ratio than healthy age-matched subjects.[13]
While alpha-tocopherol has long been known as an important antioxidant, research has now shown that the complete vitamin E team is much more effective. The different vitamin E forms have complementary effects as free radical scavengers. Together they can fight a wider spectrum of free radicals than alpha-tocopherol alone.
One research group found that gamma-tocopherol is significantly more effective than alpha-tocopherol in inhibiting the powerful and harmful oxidizing agent peroxynitrite.[14] While alpha-tocopherol can to some extent inhibit free radical generation, gamma-tocopherol is able to trap and remove existing free radicals as well as highly toxic compounds such as peroxynitrite.[15] Gamma tocopherol can, therefore, protect cells against the mutagenic and carcinogenic effects of the very damaging reactive nitrogen species