Please Scroll Down to See Forums Below
How to install the app on iOS

Follow along with the video below to see how to install our site as a web app on your home screen.

Note: This feature may not be available in some browsers.

napsgear
genezapharmateuticals
domestic-supply
puritysourcelabs
RESEARCHSARMSUGFREAKeudomestic
napsgeargenezapharmateuticals domestic-supplypuritysourcelabsRESEARCHSARMSUGFREAKeudomestic

Interesting Study Re r-ala and Exercise

jboldman

New member
Found this and thought that it was interesting that a difference existed between insulin resistant and non-insulin resistant zucker rats.
===========================================
Effects of exercise training and antioxidant R-ALA on glucose transport in insulin-sensitive rat skeletal muscle
Vitoon Saengsirisuwan, Felipe R. Perez, Tyson R. Kinnick, and Erik J. Henriksen
Muscle Metabolism Laboratory, Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona 85721-0093

We have recently demonstrated (Saengsirisuwan V, Kinnick TR, Schmit MB, and Henriksen EJ, J Appl Physiol 91: 145-153, 2001) that exercise training (ET) and the antioxidant R-(+)--lipoic acid (R-ALA) interact in an additive fashion to improve insulin action in insulin-resistant obese Zucker (fa/fa) rats. The purpose of the present study was to assess the interactions of ET and R-ALA on insulin action and oxidative stress in a model of normal insulin sensitivity, the lean Zucker (fa/) rat. For 6 wk, animals either remained sedentary, received R-ALA (30 mg · kg body wt1 · day1), performed ET (treadmill running), or underwent both R-ALA treatment and ET. ET alone or in combination with R-ALA significantly increased (P < 0.05) peak oxygen consumption (28-31%) and maximum run time (52-63%). During an oral glucose tolerance test, ET alone or in combination with R-ALA resulted in a significant lowering of the glucose response (17-36%) at 15 min relative to R-ALA alone and of the insulin response (19-36%) at 15 min compared with sedentary controls. Insulin-mediated glucose transport activity was increased by ET alone in isolated epitrochlearis (30%) and soleus (50%) muscles, and this was associated with increased GLUT-4 protein levels. Insulin action was not improved by R-ALA alone, and ET-associated improvements in these variables were not further enhanced with combined ET and R-ALA. Although ET and R-ALA caused reductions in soleus protein carbonyls (an index of oxidative stress), these alterations were not significantly correlated with insulin-mediated soleus glucose transport. These results indicate that the beneficial interactive effects of ET and R-ALA on skeletal muscle insulin action observed previously in insulin-resistant obese Zucker rats are not apparent in insulin-sensitive lean Zucker rats.
 
Last edited:
Top Bottom